

Project A.P.E.S. Flight Readiness Review

Presented by: Georgia Institute of Technology Mile High Yellow Jackets

Agenda

- 1. Mission Overview (3 Min)
- 2. Project Budget (1 Min)
- 3. Project Schedule (2 Min)
- 4. Educational Outreach Update (2 Min)
- 5. Launch Vehicle (7 min)
- 6. Flight Systems (3 Min)
- 7. Flight Avionics (7 min)
- 8. Questions (15 Min)

Project A.P.E.S. FRR

MISSION OVERVIEW

TO MAINTAIN A SUSTAINABLE TEAM DEDICATED TO THE GAINING OF KNOWLEDGE THROUGH THE DESIGNING, BUILDING, AND LAUNCHING OF REUSABLE LAUNCH VEHICLES WITH INNOVATIVE PAYLOADS IN ACCORDANCE WITH THE NASA UNIVERSITY STUDENT LAUNCH INITIATIVE GUIDELINES.

Requirements Flow Down

Mission Objectives& Success Criteria

MO	Mission Objectives					
 MO-1	An altitude of 5,280 ft. above the ground is achieved.					
MO-2	Stabilize and isolate the A.P.E.S. platform from the induced vibrations of the Launch Vehicle.					
MO-3	Closed-loop control of the platform via real-time image processing.					
MO-4	Successful recovery of the launch vehicle resulting in no damage	ge to the laun	ch vehicle.			
MSC	Mission Success Criteria	Source	Verification Method	Status		
MSC-1	Achieve an altitude of 5,280 ft., with a tolerance of +320 ft./- 640 ft.	MO-1	Testing, Analysis	Completed		
MSC-2	The Flight Experiment is successfully activated and data is collected.	MO-2, MO-3	Inspection, Analysis	Completed		
MSC-2.1	Minimum Mission Success: Platform is stabilized and isolated during the coast phase of flight	MO-2	Testing	In Progress		
MSC-2.2	<i>Minimum Mission Success</i> : Relative position and rotation data of the platform to the camera is collected during all phases of the experiment.	MO-2, MSC-2	Testing	In Progress		
MSC-2.3	Minimum Mission Success: The flight experiment terminates at apogee.	MO-4, MSC-2	Inspection	In Progress		
MSC-2.4	<i>Full Mission Success</i> : Platform is stabilized and isolated from environmental vibrations during the powered and un-powered portions of the flight.	MO-2, MSC-2	Testing	In Progress		
MSC-2.5	Full Mission Success: Platform does not come into contact with any other components of the A.P.E.S. System.	MO-3, MSC-2.4	Testing	In Progress		
MSC-3	The launch vehicle experiences no in-flight anomalies.	MO-4	Testing	In Progress		
MSC-3.1	Minimum Mission Success: The launch vehicle is recovered with no damage.	MO-4, MSC-3	Testing	In Progress		
MSC-4	Minimum Mission Success: The cost of the all the components, including the Launch Vehicle, Flight Experiment, Flight Avionics, and Motor, shall cost no more than \$5,000.	USLI Handbook	Inspection, Analysis	Completed		

Georg

Mission Timeline

Project A.P.E.S. FRR

PROJECT BUDGET

Flight Vehicle Expenditure Summary

Flight Vehicle & System Cost at FRR

2011-2012 Overall Flight Vehicle Costs (\$5,000 Limit)				
FS Flight Hardware	\$ 438.20			
LV Flight Hardware	\$ 458.90			
Motor	\$ 300.00			
Remaining	\$ 3,802.90			
Total	\$ 5,000.00			

	Cumulative	%
	Costs	Remaining
PDR	\$ 174.10	96.5 %
CDR	\$ 609.53	87.8 %
FRR	\$ 1,464.93	70.7 %
Launch	\$ 2,039.93	59.2 %

USLI —

Project A.P.E.S. FRR

PROJECT SCHEDULE

Critical Path Chart

Project A.P.E.S. FRR

EDUCATIONAL OUTREACH

Educational Outreach

- Goal: Promote interest in STEM fields
- Educators can request presentations or handson activities for their classroom

Education Outreach Activities

First LEGO League EO Event

National Air & Space Museum Discovery Station

Activity	Date	No. of Students & Educators Reached
FIRST LEGO League	Jan. 28 th	700+
Civil Air Patrol Model Rocketry Program	April 5 th , April 20 th	20-30
National Air & Space Museum Discovery Station	March 24 th	~137 (in 2 hrs.)

Project A.P.E.S. FRR

LAUNCH VEHICLE

Changes Since CDR

- The main parachute diameter was reduced from 12 ft. to 10 ft.
- The new landing velocity under the 10 ft. diameter main parachute is 17 ft./s with a corresponding maximum landing kinetic energy of 62.2 ft.- lb_f.
- The ejection charge masses have been reduced from 3.6g and 4.5g to 3.0g and 4.0g respectively.
- L-brackets have been added to the recovery system bulkheads at epoxy joints for added strength.

Launch Vehicle: Summary

- Predicted apogee: 5312 ft
- Stability margin: 2.5 calibers
- Motor: AeroTech L850

- 47 ft/s at 60 inches up the rail
- Max Mach 0.57
- Total weight: ~31 lbs
- **Dual deployment** •

Launch Vehicle: Fins

- Material: Carbon fiber honeycomb
- Attachment: Epoxy

Variable	Value	
Number of fins	3	
Root chord	15 in	
Tip chord	3 in	
Height	6 in	
Sweep Angle	59.6°	
Sweep Length	9.8 in	

Launch Vehicle: Fin Testing

- 28 lbf applied at aerodynamic center of fin
- Corresponds to 3x greater than expected drag force

Launch Vehicle: Booster Section

- Material: Aluminum and wood
- Attachment: Nuts, bolts, and epoxy

Thrust Plate

Retention Plate

FEA Analysis & Results

Part	Material	Force applied (lb _f)	Max displacement (inches)	Max stress (psi)	Safety factor
Thrust Plate	BS1088 Plywood	408	.00838	404.6	3.3
Stringers	AL 6061	408	.00526	483.3	2.9

Launch Vehicle: Thrust plate Testing

Figure 1: Test article at 400 lbs

Figure 2: Test Article at critical failure (947 lbs)

Integrated Modular Payload System (iMPS)

• Material: G10 Fiberglass, bolts

Payload Structure Impact Test

Impactor mass (kg)	Factor of Safety	Impact Energy (J)	Impactor Height (in)	Stringer length (in)	Notes
3.98	1	5.23	11.08	14	Pass
3.98	2	10.47	22.16	14	Pass
3.98	3	15.70	33.24	14	Pass

Skin – Test Vehicle, Korsakov

Georgia

VERSITY STUDENT LAUNCH INITIATIVE

Korsakov Estimated Flight Profile

Launch Vehicle: Recovery

- Dual deployment system
- Altimeter: 2 StratoLoggers for redundancy

Launch Vehicle: Recovery Testing

Black powder ejection charges:

Drogue: 3 grams Main: 4 grams

Launch Vehicle: Drift Profile

Georgia

Test data point supporting accuracy of Recovery Calculations located in the back-up slides

Launch Vehicle: Recovery – Drogue

Launch Vehicle: Recovery – Main

Launch Vehicle: Full Scale Flight Test

- Location: Manchester, TN
- Motor: L990 motor
- Altitude: 4,910 ft.
- Failures: Main Parachute Deployment Failure

Launch Vehicle: Mass Breakdown

Component	Weight (lbs)
Nose Cone	1.6
Avionics System/Payload	2.9
Ballast	5.0
Payload & Recovery	
Structure	5.9
Parachutes and Shock Cords	4.2
Booster Structure	3.9
AeroTech L850 Motor	8.3
Total	31.8

Launch Vehicle: Finished Product

Project A.P.E.S. FRR

FLIGHT SYSTEMS

Flight Systems Responsibilities

- Payload
- Avionics

Georgia

- Communications
- A.P.E.S. Ground Testing

Flight Systems: Payload

- Current solutions to the problem of eliminating natural frequency oscillations
 - Mechanical C-Spring Isolators
 - Tuned Oscillation Arrays
 - Long duration exposure without blurring
- Use of advanced isolation components adds mass and design constraints

Copyright: NASA

Copyright: NASA

Copyright: NASA

Copyright: NASA

Flight Systems: Expanded Views

Payload Integration Expanded View

A.P.E.S. Expanded View

Flight Systems: Universal Mounting Bracket

- Repeatable manufacturing
- Few constraints on Payloads
- Ease of mounting hardware
- High durability

Georg

**Deformation Exaggerated

Flight Systems: A.P.E.S.

Project A.P.E.S. FRR

FLIGHT AVIONICS

A.P.E.S. Computer

- BeagleBoard xM
 - ARM TI DM3730
 - ~850 BogoMIPS
 - Hardware DSP
 - 512MB DDR RAM
 - NEON CoProcessor
 - 3x i2c Bus
 - 2x webcams

- Linux
 - Kernel 3.2
 - Angstrom (flight)
 - Xubuntu (development)
 - OpenCV
 - DSP optimized GStreamer

Platform Localization

Object Detection, Motion Characterization, and

A.P.E.S. Controller

PID Control System to be Implemented

proportional-integral-derivative feedback loop

Setpoint: platform in center of module

Error: distance from setpoint

Field Generation and Control

- 5x TI DRV103 Solenoid driver ICs
- 12x solenoids with ~300 turns of 30 gauge magnet wire
- 1x Large Z axis Solenoid

Flight Systems: Avionics

Flight computer board

Georgia

• ATmega 2560

OpenLog

• Xbee Pro

Sensors

1 m

Sensors Used

- ADXL345 Triple Axis Accelerometer
 - Logs orientation and acceleration
 - Data sent to A.P.E.S. controller and logged

- HMC1043 3-Axis Magnetic Sensor
 - Magnetic field strength logging

- Fastrax UP501 GPS Module
 - Tracking data for logging and recovery

Telemetry and Communication

- 100mW Transceiver
- 902-928MHz FHSS
- Reliable Delivery
- 10kbps RF Data Rate
- Up to 6 mile Line of Sight Outdoor Range

Safety Considerations

Transmitter verified to *not* ignite ematches at maximum power

- GPS Data will be received via Xbee pro
- Xbee Explorer will convert data packets
- Data sent to computer and displayed on map

Xbee Explorer

Questions?

Project A.P.E.S. FRR

BACK-UP SLIDES

Project A.P.E.S. FRR Back-up Slides

TEAM OVERVIEW

Team Summary

	Team Summary			
School NameGeorgia Institute of Technology				
Team Name	Mile High Yellow Jackets			
Project Title	Active Platform Electromagnetic Stabilization			
	(A.P.E.S.)			
Launch vehicle	Vespula			
Name				
Project Lead	Richard Z.			
Safety Officer	Matt S.			
Team Advisors	Dr. Eric Feron, Dr. Marilyn Wolf			
NAR Section	Primary: Southern Area Launch vehicle (SoAR)			
	#571			
Secondary: GA Tech Ramblin' Launch				
	Club #701			
NAR Contact	Primary: Matthew Vildzius			
	Secondary: Jorge Blanco			

Georgia Tech Team Overview

- 7 person team composed of both undergraduate and graduate students
 - Grad Students: 2
 - Undergraduates: 15
- Highly Integrated team across several disciplines

Field	No. of Students
Aerospace Engineering	9
Electrical Engineering	6
Computer Science/ Computer Engineering	3
Mechanical Engineering	2
Mathematics	1

Project A.P.E.S. FRR Back-up Slides

SYSTEM REQUIREMENTS VERIFICATION MATRIX

Launch Vehicle RVM

LV	Launch Vehicle	Source	Verification Method	Status	Verification Source
LV-1	The Launch Vehicle shall carry a scientific or engineering payload.	USLI Handbook	Inspection	Completed	Section 4.4
LV-1.1	The maximum payload weight including any supporting avionics shall not exceed 15 lbs.	LV-1	Inspection	Completed	Table 21,
LV-1.2	The Launch Vehicle shall have a maximum of four (4) independent or tethered sections	LV-1	Inspection	Completed	Figure 4
LV-2	The Launch Vehicle shall carry the payload to an altitude of 5,280 ft. above the ground.	USLI Handbook, MSC-1, MO-1	Inspection, Testing	Completed	Figure 43
LV-2.1	The total impulse provided by the Launch Vehicle shall not exceed 5,120 N-s.	LV-2	Inspection	Completed	Figure 44
LV-2.2	The Launch Vehicle shall use a commercially available solid motor.	LV-2	Inspection	Completed	Figure 13
LV-2.3	The Launch Vehicle shall remain subsonic throughout the entire flight.	LV-2	Analysis	Completed	Figure 43
LV-3	The Launch Vehicle shall be safely recovered and be reusable.	USLI Handbook, MSC-3.1, MO-4	Testing, Inspection	Completed	Section 4.2
LV-3.1	The Launch Vehicle shall contain redundant altimeters.	LV-3, USLI Handbook	Inspection	Completed	Figure 7
LV-3.2	The Launch Vehicle shall carry one altimeter for recording of the official altitude used in the competition scoring.	LV-3, USLI Handbook	Inspection	Completed	Figure 8
LV-3.3	The recovery system shall be designed to be armed on the pad.	LV-3, USLI Handbook	Inspection	Completed	Figure 9
LV-3.4	The recovery system electronics shall be completely independent of the payload electronics.	LV-3, USLI Handbook	Inspection, Testing	Completed	Figure 7

Launch Vehicle RVM

LV		Launch Vehicle	Source	Verification Method	Status	Verification Source
	LV-3.5	Each altimeter shall be armed by a dedicated arming switch.	LV-3, USLI Handbook	Inspection	Completed	Figure 9
	LV-3.6	Each altimeter shall have a dedicated battery.	LV-3, USLI Handbook	Inspection	Completed	Figure 7
	LV-3.7	Each arming switch shall be accessible from the exterior of the airframe.	LV-3, USLI Handbook	Inspection	Completed	Figure 9
	LV-3.8	Each arming switch shall be capable of being locked in the "ON" position for launch.	LV-3, USLI Handbook	Testing	Completed	Figure 10
	LV-3.9	Each arming switch shall be a maximum of six (6) feet above the base of the Launch Vehicle.	LV-3, USLI Handbook	Inspection	Completed	Figure 41
	LV-3.10	The Launch Vehicle shall stage the deployment of its recovery devices	LV-3, USLI Handbook	Testing	Completed	Figure 2
	LV-3.11	Removable shear pins shall be used for both the main and drogue parachute compartments	LV-3, USLI Handbook	Inspection	Completed	Section 4.2.3
	LV-3.12	All sections shall be designed to recover within 2,500 ft. of the launch pad assuming 15 MPH winds.	LV-3, USLI Handbook	Analysis	Completed	Figure 46
	LV-3.13	Each section of the Launch Vehicle shall have a maximum landing kinetic energy of 75 ft-lb _f .	LV-3, USLI Handbook	Analysis	Completed	Table 16
	LV-3.14	The recovery system electronics shall be shielded from all onboard transmitting devices.	LV-3, USLI Handbook	Testing, Analysis	Completed	Table 27 , Section 9.3.1
	LV-4	The Launch Vehicle shall be launched standardized launch equipment	USLI Handbook	Inspection	Completed	Section 7
	LV-4.1	The Launch Vehicle shall not require any external circuitry or special ground support equipment to initiate the launch other than what is provided by the range.	LV-4, USLI Handbook	Inspection	Completed	Appendix II

Launch Vehicle RVM

L	7	Launch Vehicle	Source	Verification Method	Status	Verification Source
	LV-4.2	The Launch Vehicle shall be launched from a standard firing system using a 10 second countdown.	LV-4, USLI Handbook	Inspection	Completed	Appendix II
	LV-4.3	The Launch Vehicle shall have a pad stay time on one (1) hour. LV-4, USLI Handbook		Testing, Analysis	Completed	Figure 66
	LV-4.4	The Launch Vehicle shall be capable of being prepared for flight at the launch site within 2 hours from the time the waiver opens.	LV-4, USLI Handbook	Testing	Completed	Appendix II

Flight Systems RVM

FS Flight Systems		Source	Verification Method	Status	Verification Source	
	FS-1	The platform shall be stabilized and isolated during ascent.	MSC-2.4, MO-2	Testing	In Progress	
	FS-1.1	The platform shall not deviate more than 0.1 inches from the center of experiment cylinder.	FS-1	Analysis, Testing	In Progress	
	FS-1.2	The platform shall not come into contact with any components of the A.P.E.S. System.	FS-1, MSC-2.5	Testing	Designed	
	FS-1.3	The platform shall not rotate more than 1 rad per second for than 1/10 of a second with respect to the camera.	FS-1	Analysis, Testing	In Progress	
	FS- 2	All elements of the A.P.E.S. Systems shall weigh no more than 15 lbs.	LV-1.1	Inspection	Completed	Table 21
	FS-2.1	The A.P.E.S. Flight Experiment shall not weigh more than 10lbs.	FS-2	Inspection	Completed	Table 21
	FS-2.2	The A.P.E.S. supporting electronics shall not weigh more than 5 lbs.	FS-2	Inspection	Designed	
	FS-3	The A.P.E.S. experiment shall be terminated at apogee.	MSC-2.3	Testing	In Progress	
	FS-3.1	The platform shall be secured during descent and landing.	FS-3	Testing	In Progress	

Flight Avionics RVM

F	FA Flight Avionics		Source	Verification Method	Status	Verification Source
	FA-1	All Flight Avionics shall have a burn-in time of no less than 20 hours	MSC-2.2, MO-4	Inspection	In Progress	
	FA-2	The Flight Computer shall collect Launch Vehicle position data, environment conditions (e.g. acceleration), and data from the A.P.E.S. experiment.	MSC-2.5, MSC-2.4, MSC- 2,MO-2	Testing	Designed	
	FA-3	The A.P.E.S. computer shall be able to perform real-time image processing and control the A.P.E.S. experiment.	MO-3	Testing	In Progress	
	FA-3.1	The A.P.E.S. computer shall secure the platform at apogee for descent and landing	FS-3.1	Testing	In Progress	
	FA-4	The Flight Avionics shall operate on independent power supplies	MSC-2.5, MSC-2.4, MSC- 2,MO-2	Inspection	In Progress	
	FA-4.1	The power supplies shall allow for successful payload operation during the Launch Vehicle flight with up to 3 hours of wait time.	USLI Handbook	Analysis, Testing	Completed	Figure 66
	FA-5	The Flight Avionics shall downlink telemetry necessary to a Ground Station for the recovery of the Launch Vehicle	USLI Handbook	Analysis, Testing	In Progress	
	FA-5.1	The GPS coordinates of all independent Launch Vehicle sections shall be transmitted to the Ground Station	MO-4	Inspection	In Progress	
	FA-6	The Recovery Avionics and Recovery System shall be separate from the Flight Avionics.	USLI Handbook	Inspection	Completed	Figure 7, Section 9.2

Project A.P.E.S. FRR Back-up Slides

PROJECT BUDGET SUMMARIES

Project Budget: Summary

	Actual	Project
	Cost	Reserves
PDR	\$ 985.61	61.2 %
CDR	\$2,055.34	90.0 %
FRR	\$5,423.58	28.7 %
Launch	\$7,179.48	

Actual vs. Predicted Budget

Actual vs. Projected Total Project Costs

PDR

CDR

FRR

Launch

Project A.P.E.S. FRR Back-up Slides

PROJECT SCHEDULE RISK SUMMARIES

Project Schedule: Low-to-Moderate Risk

High-Risk Task	Potential Impact on	Mitigation		
-	Project A.P.E.S.			
		1) Develop multiple paths to achieve the end goal of developing thee robust control logic that is required for the successful demonstration of the Flight Experiment.		
Verification of	 Unsuccessful flight experiment demonstration Flight Experiment does not function properly during flight 	2) Ensure Flight Systems personnel have direct and free access to experienced personnel on and off of the team.		
Field Equations & Control Logic	 Flight Experiment encounters a flight anomaly that results in excessive draw and damage to the Flight Avionics, Power Supply, and/or Launch Vehicle 	 Ensure personnel have direct and free access to the simulation and analysis tools necessary for the development (and subsequent verification) of the control logic. 		
		4) Ensure direct and free access to the proper equipment necessary in developing and implementing the Control Logic for the A.P.E.S. experiment.		
	1) Excessive kinetic energy at landing resulting in dis- qualification from the USLI competition at CDR	 Ensure Recovery System Lead has direct and free access to experienced personnel on and off the team. 		
Recovery System Design & Fabrication	2) Excessive kinetic energy during landing resulting in damage to the rocket.	 Provide real-time feedback of the design decisions to ensure all recovery-related requirements are meet with at least a 5% margin wherever possible. 		
	 Failure to deploy the drogue and/or main parachute resulting in a high energy impact with the ground damaging or destroying the Launch Vehicle. 	 Ensure proper manufacturing techniques are utilized during the fabrication of the recovery system. 		

Project Schedule: Low-to-Moderate Risk

Risk	Risk Level	Potential Impact on Project A.P.E.S.	Mitigation
Full-Scale Launch Vehicle Test Flight	Moderate	 Schedule Impact Budgetary Impact Not qualifying for Competition Launch 	 Ensure Launch Procedures are established practiced prior to any launch opportunity. Ensure proper construction of the Launch Vehicle. Have a sufficient number of launch opportunities that are in different geographical areas as to minimize the effects of weather on the number of launch opportunities.
Ground Testing & Control Logic Development	Moderate	 Schedule Impact No Experimental Flight Data is recorded prior to the Competition Launch. 	1) Ensure personnel have direct and free access to experienced personnel on and off of the team.
Custom Flight Computer Fabrication	Moderate	 Budgetary Impact Impact to Mission Objectives 	 Ensure proper manufacturing techniques are observed during fabrication. Ensure Manufacturing and Fabrication Orders (MFO's) are sufficiently detailed for the task. Ensure that an alternate path has been identified and implemented in a timely manner that meets the requirements of the Flight Computer and schedule.

Project A.P.E.S. FRR Back-up Slides

LAUNCH VEHICLES

Backup Slide - Flight Profile

Simulated flight

Vertical motion vs. time

Backup - Payload Structure – Test Result

Fastener location	F.S. = 1	F.S. = 1.5	F.S. = 2	F.S. = 2.5	F.S. = 3
1	р	Р	р	р	Р
2	Р	Р	Р	Р	Р
3	Р	Р	Р	Р	Р
4	Р	Р	Р	Р	Р
1A	Р	Р	Р	Р	Х
2A	Р	Р	Р	Х	Х
3A	Р	Р	Р	Х	Х
4A	Р	Р	Р	Р	Р
5	Р	Р	Р	Р	Р
6	Р	Р	Р	Р	Р
7	Р	Р	Р	Р	Р
8	Р	р	Р	Р	Р

Backup Slide – Recovery Calculations

Backup Slide – Recovery Calculations

Black Powder Equation:

$$W = \frac{V\Delta P}{RT} \tag{1}$$

Variable	Description	Units
W	Weight of the black powder in pound mass	$454 \cdot W_{gram}$
V	Volume of the container to be pressurized	in ³
ΔP	Pressure Differential	psia
R	Gas Combustion Constant for black powder	$\frac{22.16f t l b_f}{l b_m \cdot R}$
Т	Gas Combustion Temperature	3307 °R

$$F_{pin} = \frac{\sigma \pi d^2}{4}$$

- Volume to be pressurized accounts for the parachute packaging
- Pressure calculated at deployment height for each parachute

Backup Slide - Korsakov Drift

Georgia US

NIVERSITY STUDENT LAUNCH INITIATIVE

Backup Slide - Flight Test Investigation

Landing damage on skin

 Structural Failure at Epoxy seam

Project A.P.E.S. FRR Back-up Slides

FLIGHT SYSTEMS: PAYLOAD

Backup Slide – Payload Science

- Interaction of magnetics fields and permanently magnetic or ferromagnetic substances
- For ferromagnetic substance:

 $\mathbf{F}(\mathbf{r},\mathbf{m}_s,\mathbf{m}) = \frac{3VN^2I^2S^2\mu\chi_m}{16\pi^2r^7} [(\mathbf{\hat{n}}\cdot\mathbf{\hat{r}})\mathbf{\hat{n}} - \mathbf{\hat{r}} - 4(\mathbf{\hat{n}}\cdot\mathbf{\hat{r}})^2\mathbf{\hat{r}}]$

• For permanently magnetic substance:

 $\mathbf{F}(\mathbf{r},\mathbf{m}_{s},\mathbf{m}) = \frac{3VNIS\mu_{0}}{4\pi r^{4}} [(\mathbf{\hat{n}}\cdot\mathbf{\hat{r}})\mathbf{M} + (\mathbf{M}\cdot\mathbf{\hat{r}})\mathbf{\hat{n}} + (\mathbf{\hat{n}}\cdot\mathbf{M})\mathbf{\hat{r}} - 5(\mathbf{\hat{n}}\cdot\mathbf{\hat{r}})(\mathbf{M}\cdot\mathbf{\hat{r}})\mathbf{\hat{r}}]$

Backup - Detailed Ground Testing Results

Initial Steady-State DC Ground Testing of Solenoid

Characteristic	Value
Turns	300
Resistance	2.6 Ω
Wire Gauge	30
Field Strength @ 0.86A	1100 μΤ

Georgia

Preliminary Solenoid Ground Testing

Alternative Response Surface Fits

Response Surface: Goodness of Fit

Flight Systems: Ground Test Plan

Goals:

- 1. Develop Control Theories
- 2. Confirm Force Equations
- 3. Produce Flight Experiment

Ground Test Sequence

- 1. Sensor Calibration
- 2. 1-D Testing
- 3. 2-D Testing
- 4. 3-D Testing
- 5. Flight Model Test

Flight Avionics Schematic

Geor

t Nata

Project A.P.E.S. FRR Back-up Slides

FLIGHT SYSTEMS: FLIGHT AVIONICS

Power Budget: Overview

SubTotals						
Standby		Typical		Maximum		
Amps	Watts	ts Amps \		Amps	Watts	
0.020	0.070	0.404	1.401	0.434	1.526	Avionics
0.300	0.990	0.950	3.646	1.450	5.807	A.P.E.S.
0.000	0.000	3.440	41.280	4.300	51.600	Other

Power Budget Detailed Summary

Power Consumption		Modes									
		Standby			Typical			Max			
Subsystem	Component	Voltage	Amps	Watts	Duty Cycle	Amps	Watts	Duty Cycle	Amps	Watts	Duty Cycle
Avionics	adx1345	3.3	0.000	0.000	1.000	0.000	0.000	1.000	0.000	0.001	1.000
	hmc1043	3.3	0.012	0.040	0.000	0.012	0.040	1.000	0.012	0.040	1.000
	atmega8u2	5	0.000	0.002	1.000	0.014	0.070	1.000	0.021	0.105	1.000
	atmega2560	5	0.000	0.002	1.000	0.020	0.100	1.000	0.029	0.145	1.000
	UP501	3.3	0.005	0.017	1.000	0.023	0.077	1.000	0.035	0.117	1.000
	Xbee-XCS	3.3	0.000	0.000	1.000	0.330	1.089	1.000	0.330	1.089	1.000
	OpenLog	5	0.002	0.010	1.000	0.005	0.025	1.000	0.006	0.030	1.000
A.P.E.S.	Beagleboard	3.3	0.300	0.990	1.000	0.650	2.145	1.000	0.850	2.805	1.000
	MCP4275 DAC	5	0.000	0.000	0.000	0.000	0.001	1.000	0.000	0.002	1.000
	2x Webcam	5	0.000	0.000	0.000	0.300	1.500	1.000	0.600	3.000	1.000
Other	DRV103 + Solenoids	12	0.000	0.000	0.000	3.440	41.280	0.182	4.300	51.600	0.800
Max Power Draw (W)		1.06		46.33		58.93					
Duty Cycled Power Consumption (W)		1.02		12.55		48.61					
10% Contingency (W)			0.10 1.26			4.86					
Power Consumption with Contingency (W)			1.12			13.81			53.47		

